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ABSTRACT

The filtering problem is studied analytically for a system
composed of an inertial navigator giving continuous indication
of position and velocity and an external position fixing device
giving continuous or discrete positional information. Acceler-
ometer and external position errors are represented by white noise.
Gyro drift is represented by a random walk process. Reasonable
approximations lead to simplified models plus analytic predic-
tions of the filter's performance. The analytic results are veri-
fied by comparison with computer simulationsvusing more accurate
models. Error growth of the inertial navigator without external
information is shown to be extremely small for the first eight
minutes following alignment. During that interval accelerometer
noise is the predominant source of error. Estimation of the plat-
form misalignment is not necessary unless the inertial system

must subsequently navigate without external position information.
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NOMENCLATURE

vehicle acceleration, ft/sec?

platform misalignment times earth radius, ft
drift rate of gyro times earth radius, ft/sec
system parameters matrix

acceleration due to gravity, ft/sec?
measurement matrix

identity matrix

filter gain matrix

latitude, rad

measurement, ft

accelerometer noise, ft/sec?

power spectral density of accelerometer noise, ft?/sec?
covariance matrix

system noise vector

power spectral density of system noise matrix
position error of inertial navigator, ft

error in the external position information, ft
power spectral density of external position error, ft? sec
earth's radius, ft

Laplace operator

time, sec

velocity error of inertial navigator, ft/sec
variance of external position fix, ft?

white noise source for gyro drift, £ft/sec

power spectral density of gyro noise source, ft?/sec?




X = system state vector

a = ratio of 1/At and filter natural frequency
Y“ = ratio of gyro and accelerometer noise sources
At = time interval between position fixes, sec
€e(r) = error in the estimate of r, ft

o,> = variance in variable, r, ft?

Wie = earth rate, rad/sec

Wp = natural frequency of filter, rad/sec

Wg = Schuler frequency, rad/sec

Superscripts

. = time derivative

~ = estimate

T = transpose

- = before measurement

+ = after measurement

Subscripts

X = north component

y = east component

i

vertical component




Introéuction

A promising method of aircraft navigation involves the opti-
mum mixing of inertially derived position and velocity data together
with radio position fixes. The optimum filter for mixing the data
requires a mathematical model of the error propagation. It is de-
sirable that the model be as simple as practicable because of the
large number of mathematical operations involved in the implementa-
tion of the filter. A simple model is also of practical necessity
in order to obtain analytic expressions for the elements of the co-
variance matrix. The purpose of this work is to show how the fil-
ter can be simplified through valid approximations and analyzed
analytically. The work is motivated by an application where posi-
tion fixes are available at a rapid rate (every few seconds) for a
relatively short period of time (five to ten minutes). Subsequently,
the inertial system is required to navigate without external fix in-
formation. Consequently, the filter should estimate the alignment
error of the inertial system in addition to current position and
velocity. A practical example of this situation occurs during an
instrument approach or departure where very precise position data
is available. Typical specifications are a 10 ft position uncer-
fainty and a 3 ft/sec velocity uncertainty while external informa-
tion is available.

The simplifications which result are valid when the time bet-
ween fixes is less than one tenth of a Schuler period. A computer
simulation was used to verify the predicted range of validity by
comparing the approximate models against more accurate models.

The results have proven to be generally applicable to situations



where the inertial system is updated at an interval less than one
tenth the Schuler period. Theory would predict a significant loss
of accuracy if the system were updated at any slower rate. Conse-
gquently, the analysis should be applicable to most cases of prac-

tical interest.

Models of the System

A block diagram of the system is shown in Figure 1. The
measurement is the difference between the position given by the
inertial navigator and the external fix. It is, therefore, a
measure of the error in the inertial indication of position. Fil-
tering the measurement gives an optimum estimate of all the iner-
tial error variables. The position and velocity error estimates
are subtracted from the output of the inertial system to obtain
the optimum estimate of position and velocity. This approach per-
mits the use of a linear error model for the inertial navigator.

The state equation with no error sources is

x = Fx (1)

For a local-level, Schuler-tuned platform aligned to true north,

let




-i0}pbianpu pliaghy ayyj jo woaboip Hoo0jg | "biI4

3jowi}s? + K310018A |DI}4dU]
A}120|9A =
wnuwijdo -
asiou
, HO1VOIANI .
38siou —» NOILISOd ﬁ
TUYNY3LX3
A HJOLVOIAVN
N1l be— — AVILE3NI
J w +
v

ajowi}sa -
uoijisod =
+

wnuwijdo uoljisod |Dij4dul



ry] [ 0o 1 0 0 0 0
ry 0 0 0 1 0 0 0
vx 0 0 0 0 0 wg? 0
x= |vy| F = 0 0 0 0 ~uwg? 0 0 (2)
Cx -WiesinL O 0 1 0 -wjesinL 0
Cy 0 0 -1 0 wiesinL 0 wjecosL
Cy -wjecosL O 0 =-tanL 0 -wjecosL 0
L - 4

The state, x, represents the errors in the inertial system. The
platform misalignment angles, c, are scaled by earth's radius, Re,
to give them the units in feet. The Schuler frequency, wg, is de-
fined by

ws? = g/Re (3)
The inertial error at the output of the accelerometers due to the
platférm misalignment is thus wg®’c. The choice of units is pri-
marily for convenience. The model assumes that the vehicle velo-
city is small compared to Rewje, vehicle acceleration is small in
comparison to g, Coriolis accelerations are negligible, and the sys-
tem does not operate close to the earth's polar axis.

Equation (1) has been solved in general for the above case.l
From the solution it can be argued that the terms involving earth
rate, wjie, have little influence on the variables fof operating
times of interest here. By neglecting them, the error model un~

couples into two identical, Schuler-tuned, level loops. For this

case

0 U.)Sz (4)
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The model described by (4) is used as the starting pdint for the
analytic approximation. The model described by (2) was programmed
for the computer verification of the theory.

The main sources of error in the inertial system are the gyro
drift and accelerometer noise. Only the random componenﬁs of these
errors are significant because the constant components are esti-
mated by the filter. The random component of the gyro drift, 4,

(2, 3) j.e. the output of

is well approximated by a random walk,
an integrator driven by a white noise, w. The random componént of
the accelerometer noise is approximated by a white noise, n. This
is equivalent to assuming that the mean squared uncertainty in the
drift rate and the mean squared uncertainty in the velocity error
due to accelerometer noise both grow linearly with time. The state

vector of the system must be augmented to include the random walk.

The system is now described by

X = Fx+g (5)
where
9 d N F 9
r 0 1l 0 0 0
v 0 0 wg? O n (6)
X= F = q-=
c 0 -1 0 1 0
d 0 0 0 0 w
e L o o

Equation (5) is shown as a signal-flow diagzam in Figure 2.
The error in the external position fixing device is approxi-

mated by a white noise source, rp. This does not account for bias
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or scale factor errors in the position fix.

Filtering Theory

The analytic analysis is based on the minimum variance esti-
mator as derived by Kalman and Bucy.4 The system is described by

(5). The measurement is given by
m = Hx + rp (7)

The estimate is propagated by

= Fx + PHTR" 1 (m - Hx) (8)

54>

The covariance matrix is propagated by
p = Fp + PFT + @ - pHTR lmp (9)

With no measurements the estimate and the covariance matrix propa-
gate as if R™! were zero. When measurements are taken at discrete
times, the same is true between measurements., The discrete measure-
ment is contaminated by an independent, random variable with zero

mean and variance, V. At each measurement the new estimate is

given by
X = Km (10)
where
K = pT gT[upT uT + vi~t (11)
pt =

[I - KH] P~ (12)

+ denotes just after the measurement and

- denotes just before the measurement




Error Propagation

Let x and F be defined by (6). Propagate the covariance ma-
trix when no measurements are taken by integrating (9) with R_l
set equal to zero. This is a set of ten coupled, linear, differ-
ential equations. These have been integrated assuming P(0) = 0.

The result shows how the position and velocity uncertainties grow

after initial alignment because of gyro drift and accelerometer

noise.
[wet
O'r2 = B-N—g- 751’—: - % sin 2wst] (13)
S &

wgt 3 :
+ _E? _%_ + iE%EL— - 2sin wgt + 2wgt cos wgt - % sin ZwSt]

oy’ = st + % sin 2wgt (14)
ws | 2

e

nofw

+ X
Wg 4

wgt + L sin 2wgt - 2sin w§4

For t small in comparison to the Schuler period, %E, these are ap-
S

proximated to first order by

2 ~ N (wgt)® W (wst)’ .

Or" = wg > 3 * wg 2 - 15)
2 N W ((L)st) 3

Ov = B; wst + ws3 ——Q»U (16)

Equations (15) and (16) are the result of the integration when the

system is represented by




F = (17)

as can be verified by solving a simpler set of ten linear, differ-
ential equations. The signal flow diagram for the system repre-
sented by (17) is the same as that shown in Figure 2, but with the
dotted feedback path removed. The units of N and W are identical.

Let

Equations (13) - (16) are plotted in Figures 3-7 for y = 4. Over
long time intervals the position uncertainty is dominated by the
contribution due to gyro drift. For very short time intervals,
however, the greater contribution to the uncertainty comes from

_ Fhe accelerometer noise. For wgt < 1, the two contributions are
equal when |

1 t’

3 4 " .
3 Nt =Y Wg N V1V (19)
For Yy = 4 t 2 10 min

The fundamental conclusion from this analysis is that the position
uncertainty of an aligned inertial system remains relatively small
for the first tenth of a Schuler period. During that time the
major error source is the accelerometer noise. After that time the

gyro drift takes over and the uncertainty grows rapidly. The theéry
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predicts very small position uncertainty if the system can be re-
aligned at intervals less than one tenth Schuler period. The con-
clusion is supported by the observation of actual inertial navi-

gator data.(s)

Continuous Filtering

The analysis of the previous section has shown that for short
time periods, the position uncertainty is dominated by the acceler-
ometer noise, and the accelerometer noise propagation is well ap-
proximated by two simple integrations. Since the gyro drift, d,
and platform misalignment, ¢, have a negligible effect on the posi-
tion and velocity uncertainty, they are temporarily dropped from

the state, X.
r 0 1 0
x = 3 q (20)

The filter equations describing this simple system have been com-

(6)

Il
I

pletely solved by Potter and VanderVelde. The steady-state solu-

tion gives

Urz = /-2- Nl/4 R3/4
(21)
. 4 _ N
Define W, = g (22)
The steady-state filter gain is
/5 Wn
K = (23)
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The transient behavior of the filter gain depends on the initial
value of P, but it is within a few percent of the steady state
value after wpt > 2. Consequently, E% is a prediction of the time
to reach steady state. The filter is shown in Figure 8. The er-
ror in the estimate of inertial position error is related to the

actual inertial position error by

e(r) _ s?
= = (24)

s? + VZ wps + wp?

Only that part of the inertial error with frequency component at
or above wp fails to be estimated correctly by the filter. Com-
ponents of error at the Schuler frequency, for example, are at-
tenuated by the factor gi 2. It can be shown that the filter
which includes the Schule? loop as represented by Equation (4) re-
duces to the simple filter above so long as wg << wp.

Next, model the inertial system by the state equations given
by (17) so that the misalignment angle and the drift can be es-
timated. This model is a good approximation of the error propaga-
tion over short intervals and is simple enough so that the filter
can probably be determined analytically using the method described

in reference (6). Attention is focused on the steady-state solu-

tion which for ywg < wp is given approximately by

o2 = V2 N1/4 g374
oy = V2 N3/4 g1/4

3/4 (25)
o2 = V2 Wl/4 i

wg*
1/4
O'd2 = \/Z W3/4 (—-——N)
Wg
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To a first order approximation the position and velocity uncer-
tainty are the same as they were when the drift and misalignment
were not estimated.

The accuracy of the misalignment and drift estimates are de-
termined by the gyro drift and accelerometer noise alone. The same
accuracy would result if ¢ and d were optimally estimated by look-
ing at the output of the accelerometer with the vehicle at rest
and with no input to the gyro other than the drift itself. This
is just the process which takes place during ground alignment.

Note that estimation of misalignment by the filter and physical
alignment of the system are equivalent so long as the model used
by the filter is a satisfactory representation of the physical
system. Therefore, under the assumption, yws < wp, the inflight
estimate of drift and misalignment can be as accurate in the steady

state as a ground alignment. The steady-state filter gain is given
by

-

[ /2wy

(26)

The filter is shown in Figure 9. For this filter the error
in the estimate of inertial position error is related to the actual

inertial error by

e () s

= (27)
t (s? + V2 wps + wp?) (s® + V2 yug s + y? wg?)
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Equation (27) is plotted in Figure 10. It can be seen that the
estimation of the drift and the misalignment do not appreciably
affect the steady-state position error because the more complex
filter only decreases frequency components which were already
heavily attenuated. It is expected that 2/wpn is a measure of the
estimation time for position and velocity while 2/ywg is a measure
of the estimation time for misalignment and drift. To verify this
it is necessary to integrate (9) for the transient values of the

covariance matrix.

Discrete Filtering

It is possible to relate any discrete filtering problem to
what will be called its "continuous approximation," provided the
time between measurements, At, is not too large. The connection

is made by assuming

R = V At (28)

This can be understood by deriving the continuous case variance
equation from the discrete case scheme. For short time intervals,

At, the covariance matrix can be expanded in a Taylor series

P(tn)” = P(tp-1) + Fltp-1) P(tp-1) At
(29)
+ P(tp-7) FT(tn_l) At + QAt + higher order terms

At the measurement time update P(tp)

-1
P(ty)T = P(ty) = Plty)~ HT Eﬂ?ﬁgﬂ_ HT + %E] H P(tp) (30)
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This yields finally

P(ty) " - P(tp-1)
At

= F(tp-1) P(tp-1) + P(tp-1) FT(tp_7)
(31)

1

+ 0 = P(tp) HT [wP(ty)~ HT At + R1™™ HP(tp)~

which becomes Equation (9) in the limit as At approaches zero.

Now consider the limitation on the time between measurements.
If the discrete process yields the same results as the continuous
one, this means that the position error in the discrete process
does not depend upon the model chosen to represent the inertial
system (since this has been shown to be true in the continuous
case). But the models were shown to be equivalent only for a dura-
tion of one tenth of a Schuler period. Therefore it seems con-
sistent to take as one time limit for the continuous approximation
the same value, one tenth of a Schuler period. 1In addition, the
assumption of (28) implies that the impulse representing the auto-
correlation function of the measurement noise can be replaced by
a triangular curve of height, V, but equivalent area, R. Although
these curves are not the same, they yield the same results if At
is small in comparison to the response time of the system. In this
case 1/wp represents the characteristic time of the filter fed by
the measurement noise. Therefore the continuous approximation is
only valid for At < l/wp. The excursion of the position uncertainty
between measurements as a fraction of the average steady-state

position uncertainty is found from (11):
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= = %===-=-a=== (32)
1+ L 1+ 1 1+ 2
Or ) wp At
o = 1 (33)
T wp At

The restriction on the validity of the continuous approximation
also defines the desirable range of operation. If a < 1, the maxi-
mum excursions of the position uncertainty during the interval
between measurements will be large compared to the average value.

Combining Equations (21), (22), (28) and (33) gives

V2 Vv

or?

(34)

The choice of o on the basis of (33) fixes the ratio of external

fix accuracy to position uncertainty.

Computer Verification of Theory

The validity of the simplified models was checked by pro-
gramming the computer with the more rigorous model of Equation (2)
and comparing results. The details of the computation are con-

tained in Reference 7. The results are summarized below:

1. It was found that the error propagation using the
most rigorous model of the inertial system was in-
distinguishable from that predicted by Equations
(13) and (14) when‘plotted to the scales of Fig-

ures 3-6.
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2. For continuous filtering in the presence of ac-
celerometer noise, the rms position and velocity
errors are the same to three significant figures

for all models of the inertial navigator.

3. The continuous approximation provides a good rep-
resentation of the discrete filter when the time
between updates is less than 1/w, and one tenth

of a Schuler period.

Figure 11 gives typical results. In the case shown, N = 10-2
ft2/sec®. The four curves are the result of discrete filtering
with V = 10°ft?, The time intervals between updates are 1 sec,

30 sec, 3 min, and 18 min. For the 1 sec, 30 sec and 3 min inter-
vals the average is well predicted by the theory. The time to
reach steady-state is well predicted by the 2/wy rule. For the

18 min interval the average is a poor representation of the per-
formance. The excursions between updates are large in comparison
to the predicted average and the time to reach steady-state is
longer than the rule would predict. This would appear to confirm
the assumption that the continuous approximation is valid for times

less than 1/wp and one tenth of a Schuler period.

Application

The steady-state position and velocity uncertainties were

given by
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z 2 a4t R3E - wpn R

Q
=
I

(35)
oyl vz N4 R - wp *R

These relationships are plotted in Figure 12. Any two variables
determine the remaining three.

The steady-state misalignment and drift rate uncertainty were

given by
3/4
02 = vIut/t Q)N___T; = VT yes X
S s
(36)
1/4
og? = /2 W3/4 Cfga = V2 (ywg)?® qu
s s

These relationships are plotted in Figure 13.
For discrete measurements, the continuous approximation gave

average steady-state uncertainties

2 /3 N1/4 V3/4 At3/4

V2 N(abt)?®

Q
)
Il

(37)

2 V2 N3/4 Vl/4 Atl/4 = V2 N . oAt

Q
<
Il

These relationships are plotted in Figure 14.

As an example, a typical specification on position and velocity
uncertainty is o, = 10 ft and oy = 3 ft/sec. The specification is
met with wp = .3 rad/sec, N = 1.9 ft?/sec® and R = 235 ft sec.
Assuming a radar with an rms position error of 15 ft, the update
time should be 1.05 sec. Assuming y = 4, the characteristics of
the inertial navigator which would just meet the specification

are
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N = 1.9 ft?/sec?

W = 480 ft?/sec?

° = 74,000 ft (3.6 mrad)
°3 = 370 ft/sec

Note that the gyro drift uncertainty is over 100 times as large
as the uncertainty in the estimate of velocity. For an inertial
system used without update, the normal figure of merit is the
velocity uncertainty which is assumed equal to the gyro drift un-
certainty for long periods.

By comparison, the NASA data reported in Reference 5 can be

fitted to Equation (13) giving

y = 4

3 x 1074 ft2/sec?

=z
It

W = 7.68 x 1072 ft?/sec?

An optimum estimate of the system misalignment and drift would

yield

Oc 940 ft (.046 mrad)

od 4,7 ft/sec

This system could have 75 times as much random error and still meet
the previous specification, so long as external position informa-
tion were available. The only need fof a quality inertial system
is to be able to navigate when the external information is lost.

Figure 12 shows that the accuracy of the position estimate is
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dependent most upon the noise in the position measurement, while

the accuracy of the velocity estimate is dependent most upon the
inertial system noise. Figure 12 can also be used to predict the
performance of a filter with no inertial information. The total
acceleration of the vehicle would be represented by the white noise,
N. The filter would estimate the total position and total velocity
as opposed to their inertial errors. Such a system could give rela-
tively good position information, but the velocity uncertainty would
be large. For example, with no inertial system, the steady-state
error in the position estimate due to low frequency acceleration,

a, is from (24)

= = | (38)

With an aircraft easily capable of accelerations of one half "g",
wp would have to be raised above one rad/sec to meet the position
error specification. A much better radar would then be needed to

meet the specification on velocity.

Conclusions

1, A promising form of hybrid navigation is to update
an inertial navigator at intervals less than one
tenth the Schuler period, because the error build-
up during this interval is very small in comparison
to the long-term drift which is normally used as

the figure of merit.
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Error growth in the inertial navigator during this
interval is well approximated by straight integra-

tions.

Accelerometer noise has the greater effect on the

error of an aligned system for t < %ﬁg. Gyro drift

S
predominates after that time.

For continuous filtering, the accelerometer error

predominates for ywg < Wp.

Filter performance for cases of practical interest
can be predicted on the basis of simple, analytic
models. These same models can be used to design

the filter.

It is hot necessary to estimate the platform mis-
alignment as long as there is continuous external
position data. Even though the angles get large,
the filter is continually estimating the velocity
error which they produce. The main reason for es-
timating misalignment angles is to be able to navi-
gate accurately in the event the external position

information is lost.

Position accuracy is most strongly influenced by
the external position fix accuracy. Velocity ac-
curacy is most strongly influenced by accelerometer

noise.
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For update times which are shorter than 1/wp and
one tenth Schuler period, the discrete filter
performance can be predicted by the analytic re-

sults of the continuous case,
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New Technology Appendix

After a diligent review of the work performed under

this contract, no new innovation, discovery, improvement

or invention was made."






